Approximate quantum error correction, random codes, and quantum channel capacity
نویسنده
چکیده
We work out a theory of approximate quantum error correction that allows us to derive a general lower bound for the entanglement fidelity of a quantum code. The lower bound is given in terms of Kraus operators of the quantum noise. This result is then used to analyze the average error correcting performance of codes that are randomly drawn from unitarily invariant code ensembles. Our results confirm that random codes of sufficiently large block size are highly suitable for quantum error correction. Moreover, employing a lemma of Bennett, Shor, Smolin, and Thapliyal, we prove that random coding attains information rates of the regularized coherent information.
منابع مشابه
Quantum Channel Capacity of Very Noisy Channels
We present a family of additive quantum error-correcting codes whose capacities exceeds that of quantum random coding (hashing) for very noisy channels. These codes provide non-zero capacity in a depolarizing channel for fidelity parameters f when f > .80944. Random coding has non-zero capacity only for f > .81071; by analogy to the classical Shannon coding limit, this value had previously been...
متن کاملQuantum Error-Correction Codes on Abelian Groups
We prove a general form of bit flip formula for the quantum Fourier transform on finite abelian groups and use it to encode some general CSS codes on these groups.
متن کاملConstacyclic Codes over Group Ring (Zq[v])/G
Recently, codes over some special finite rings especially chain rings have been studied. More recently, codes over finite non-chain rings have been also considered. Study on codes over such rings or rings in general is motivated by the existence of some special maps called Gray maps whose images give codes over fields. Quantum error-correcting (QEC) codes play a crucial role in protecting quantum ...
متن کاملSimple approach to approximate quantum error correction based on the transpose channel
We demonstrate that there exists a universal, near-optimal recovery map—the transpose channel—for approximate quantum error-correcting codes, where optimality is defined using the worst-case fidelity. Using the transpose channel, we provide an alternative interpretation of the standard quantum error correction (QEC) conditions and generalize them to a set of conditions for approximate QEC (AQEC...
متن کاملGENERALIZED JOINT HIGHER-RANK NUMERICAL RANGE
The rank-k numerical range has a close connection to the construction of quantum error correction code for a noisy quantum channel. For noisy quantum channel, a quantum error correcting code of dimension k exists if and only if the associated joint rank-k numerical range is non-empty. In this paper the notion of joint rank-k numerical range is generalized and some statements of [2011, Generaliz...
متن کامل